

ICE-Guided Implantation of the Conformal Left Atrial Appendage Closure Device: First Clinical Report

Petr Neuzil¹, MD PhD, Pavel Hala¹, MD, Veronica Lekesova¹, MD, Milena Prokopova¹, MD, Vivek Y. Reddy^{1,2}, MD ¹Homolka Hospital, Prague, Czech Republic, ²Helmsley Center for Electrophysiology, Mount Sinai Hospital, New York, NY

INTRODUCTION

- > Left Atrial Appendage Closure (LAAC) is emerging as a cornerstone AF stroke reduction strategy in patients poor candidates for long-term oral that are anticoagulation.
- > Acceptance of LAAC is limited by the need for procedural TEE and consequently, the requisite general anesthesia.
- > The Conformal LAAC device (Conformal Medical, Inc.) is a novel LAAC implant composed of a foam cup/nitinol endoskeleton and designed to provide an improved seal necessitating less precise positioning (Figure 1).
- > We evaluated the ability to perform LAAC with a combination of intracardiac echo (ICE) fluoroscopy, and specifically without TEE or GA.

Figure 1. Conformal Left Atrial Appendage Closure Device and Delivery System

Disclosures: Study funded by Conformal Medical, Inc. PN. - Research Grant. V.R., P.V., V.L., M.P. – none.

METHODS

and

- ► <u>Key Inclusion criteria</u>:
 - Indicated / planned for LAAC
 - large appendages has recently become available)
- Protocol for ICE-guided LAAC:

 - 2. LAAC procedure performed under sedation

 - 5. Deploy LAAC device with ICE guidance (from within LAA)

 - Just prior to device release, introduce TEE probe to validate ICE
 - 8. Patients were discharged on DAPT.

RESULTS

- > <u>Patient Cohort</u>: n=8; 69.1 \pm 12.6 yrs, 63% female, CHA₂DS₂-Vasc = 3.9 \pm 1.9 > ICE assessment revealed good position, and a small leak in only 1 pt ➤ Implantation successful in all 8 pts (100%), using a single device/pt \blacktriangleright Procedure time = 45.4 ± 10.7 min ; Fluoroscopy time = 4.6 ± 1.5 min > Pre-discharge TTEs (next day) were normal in all pts device thrombus, and 1 small leak (<2 mm; same pt with leak at baseline) \succ Two adverse events (unrelated to both device and procedure):
 - bradycardia which occurred in a subsequent hospitalization.
 - 2. Hospitalization for tachyarrhythmia (treated with medications)

For this Czech FIH clinical trial, both EC and Czech National Regulatory approval were obtained pre-enrollment. All patients signed informed consent.

2. Mean LAA diameter (ostial min + max size /2) < 25 mm (because at that time, only 1 device size was available (a larger size able to accommodate

Baseline TEE to exclude thrombus and obtain LAA measurements

3. ICE (Acunav, Siemens Inc) imaging: i) confirm no LAA thrombus (ICE in pulmonary artery), & ii) transseptal puncture w/ standard 8.5Fr sheath 4. TS sheath exchanged for custom Delivery Sheath (15.4Fr ID/17.5Fr OD), but first maneuver ICE catheter into LA thru TS hole using wire as guide 6. Assess implant position, seal and stability using fluoroscopy and ICE

 \blacktriangleright Broad range of LAA sizes: 19.9±2.0 mm, range 15-28 mm, min depth 13 mm \blacktriangleright <u>Pre-release TEE</u>: No leak in 7 pts (87.5%), Minor leak (<2mm) in 1 pt (12.5%) > 45-day follow-up TEEs (completed in 5 of 8 pts): all devices were stable, no 1. Pericardial effusion following removal of temporary RV pacing wire for

In this first report of ICE-guided LAAC with the novel Conformal LAAC Implant, implantation was feasible, safe and effective in achieving 100% closure. Further study is required to fully validate this ICE-only (no TEE/no anesthesia) protocol.

Figure 2. ICE of Implant prior to release

Figure 3. Fluoroscopy of ICE-Imaging guided LAA closure. The baseline contrast angiography images prior just implantation are shown in A & C. Note that in post-implant videos (B & D), the device was occlusive, thereby preventing the contrast from moving into the LAA. Similarly, in **D**, some of the contrast was embedded into the foam covering.

CONCLUSIONS